3500/22M Transient Data Interface Module

Product Datasheet
Bently Nevada* Asset Condition Monitoring

Description

The 3500/22M Transient Data Interface (TDI) is the interface between the 3500 monitoring system and compatible software (System 1* Condition Monitoring and Diagnostic software and 3500 System Configuration software). The TDI combines the function of a 3500/20 Rack Interface Module (RIM) with the data collection capability of a communication processor such as TDXnet.

The TDI resides in the slot adjacent to the power supplies of a 3500 rack. It interfaces with M series monitors (3500/40M, 3500/42M, etc.) to continuously collect steady state and transient dynamic (waveform) data and pass this data through an Ethernet link to the host software. Refer to the Compatibility section at the end of this document for more information.

Static data capture capability is standard with the TDI. However, using an optional Channel Enabling Disk will allow the TDI to capture dynamic and high-resolution transient data as well. The TDI incorporates the communication processor function within the 3500 rack.

Although the TDI provides certain functions common to the entire rack, it is not part of the critical monitoring path and has no effect on the proper, normal operation of the overall monitor system for automatic machinery protection. Every 3500 rack requires one TDI or RIM, which always occupies Slot 1 (next to the power supplies).
Specifications

Inputs

| Power Consumption | 10.5 Watts |

Data

| Front Panel USB-B | 10Base-T or 100Base-TX Ethernet, autosensing |
| 100Base-FX I/O | 100Base-FX Fiber-Optic Ethernet |

Outputs

| Front Panel LEDs |
OK LED	Indicates when the 3500/22M is operating properly
TX/RX LED	Indicates when the 3500/22M is communicating with the other modules in the rack
TM LED	Indicates when the 3500 rack is in Trip Multiply mode
CONFIG OK LED	Indicates that the 3500 rack has a valid configuration

I/O Module OK Relay

| Function |
| Indicates when the 3500 rack is operating normally or when a fault has been detected within the rack. User can select either an “OPEN” or “CLOSED” contact to annunciate a NOT OK condition. This relay always operates as “Normally Energized”. |

Ratings

| Standard OK Relay is rated to 5A @ 24 Vdc/120 Vac, 120 Watts/600 VA |
| Switched Power (maximum) |
| OK Relay with gold-plated contacts is rated down to 1 mA @ 1 Vdc (minimum) |

Arc Protection

| Arc suppressors are provided. |

Controls

| Front Panel |
| Rack reset button | Clears latched alarms and Timed OK Channel Defeat in the rack. Performs |

same function as “Rack Reset” contact on I/O module

Address switch

| Used to set the rack address: 127 possible addresses |

Configuration Keylock

| Used to place 3500 rack in either “RUN” mode or “PROGRAM” mode. RUN mode allows for normal operation of the rack and locks out configuration changes. PROGRAM mode allows for normal operation of the rack and also allows for local or remote rack configuration. The key can be removed from the rack in either position, allowing the switch to remain in either the RUN or PROGRAM position. Locking the switch in the RUN position allows you to restrict unauthorized rack reconfiguration. Locking the switch in PROGRAM position allows remote reconfiguration of a rack at any time. |
I/O Module System Contacts

<table>
<thead>
<tr>
<th>Trip Multiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Maximum Current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Maximum Current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rack Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Maximum Current</td>
</tr>
</tbody>
</table>

I/O Module Signal Common Terminal

Both versions of the TDI I/O Module now include a 2-pin connector for connecting Signal Common to a single point Instrument Ground for the rack. When this is done, the selector switch on the side of the Power Input Module (PIM) must be slid in the direction of the arrow marked “HP” to isolate Signal Common from chassis (safety) ground.

Data Collection

Keyphasor* Inputs

- Supports the four 3500 system Keyphasor signals. The speed range support is based on the number of dynamic channels enabled:

<table>
<thead>
<tr>
<th>Number of Channels</th>
<th>Minimum Speed</th>
<th>Maximum Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 16</td>
<td>1 rpm</td>
<td>100,000 rpm</td>
</tr>
<tr>
<td>17 to 24</td>
<td>1 rpm</td>
<td>60,000 rpm</td>
</tr>
<tr>
<td>25 to 48</td>
<td>1 rpm</td>
<td>30,000 rpm</td>
</tr>
</tbody>
</table>

- Supports multiple events per revolution speed inputs up to 20 kHz

Startup/Coastdown Data

- Data collected at selected increments of speed and time
- Increasing and decreasing speed intervals are independently programmable
- Initiation of transient data collection based on detecting the machine speed within one of two programmable windows
- The number of transient events that can be collected is only limited by the available memory in the module

Alarm Data Collection

- Pre- and post-alarm data
- Static values collected at one second intervals for 10 minutes before the event and 1 minute after the event
- Static values collected at 100 ms intervals for 20 seconds before the event and 10 seconds after the event
- 2.5 minutes of waveform data collected at 10-second intervals before the alarm and 1 minute of waveform data collected at 10-second intervals after the alarm

Static Values Data

- TDI will collect the static values including the values measured by the monitors.
- TDI provides four nX static values for each point. Amplitude and phase are returned for each of the values.

Waveform Sampling

- Collection of waveforms for 48 channels.
- DC-coupled waveforms
- Simultaneous Synchronous and Asynchronous data sampled during all operational modes
- User-configurable Synchronous waveform sampling rates:
 - 1024 samples/rev for 2 revolutions
 - 720 samples/rev for 2 revolutions
 - 512 samples/rev for 4 revolutions
 - 360 samples/rev for 4 revolutions
 - 256 samples/rev for 8 revolutions
 - 128 samples/rev for 16 revolutions
 - 64 samples/rev for 32 revolutions
- 32 samples/rev for 64 revolutions
- 16 samples/rev for 128 revolutions

- Asynchronous data sampled to support an 800-line spectrum at the following frequency spans:
 - 10 Hz
 - 20 Hz
 - 50 Hz
 - 100 Hz
 - 200 Hz
 - 500 Hz
 - 1000 Hz
 - 2000 Hz
 - 5000 Hz
 - 10 kHz
 - 20 kHz
 - 30 kHz

- Asynchronous data is anti-alias filtered
- Channel Pairs for providing Orbit or synchronous full spectrum presentations can be split among multiple monitors. For asynchronous full spectrums the channels must be within a monitor channel pair (30 kHz frequency span data will not be phase correlated between channel pairs)

Communications

<table>
<thead>
<tr>
<th>Protocols</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BN Host Protocol</td>
<td>Communication with 3500 Configuration Software, 3500 Data Acquisition Software, and 3500 Display Software</td>
</tr>
<tr>
<td>BN TDI Protocol</td>
<td>Communication with System 1* Condition Monitoring and Diagnostic Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
</tr>
<tr>
<td>Protocol Supported</td>
</tr>
<tr>
<td>Baud Rate</td>
</tr>
<tr>
<td>Cable Length</td>
</tr>
<tr>
<td>Connector</td>
</tr>
</tbody>
</table>

10Base-T / 100Base-TX Ethernet I/O

| Communications | Ethernet, 10Base-T and 100Base-TX. Conforms to IEEE802.3 |
| Protocol Supported | BN Host Protocol and BN TDI Protocol using Ethernet TCP/IP |

<table>
<thead>
<tr>
<th>100 Base-FX Ethernet I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
</tr>
<tr>
<td>Protocol Supported</td>
</tr>
<tr>
<td>Connection</td>
</tr>
<tr>
<td>Cable Length</td>
</tr>
</tbody>
</table>

The 3500/22M has a MT-RJ Male connector on the unit for Fiber Optic 100 Base-FX cabling therefore you MUST use a MT-RJ Female connector on the fiber optic cable to ensure proper connectivity.

Environmental Limits

<table>
<thead>
<tr>
<th>TDI Module, 10Base-T/100Base-TX I/O, and 100Base-FX I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>-30 °C to +65 °C (-22 °F to +149 °F)</td>
</tr>
<tr>
<td>Storage Temperature</td>
</tr>
<tr>
<td>-40 °C to +85 °C (-40 °F to +185 °F)</td>
</tr>
<tr>
<td>Humidity</td>
</tr>
<tr>
<td>95%, non-condensing</td>
</tr>
<tr>
<td>Battery Life</td>
</tr>
<tr>
<td>Powered TDI</td>
</tr>
<tr>
<td>38 years @ 50 °C (122 °F)</td>
</tr>
<tr>
<td>Unpowered TDI</td>
</tr>
<tr>
<td>12 years @ 50 °C (122 °F)</td>
</tr>
</tbody>
</table>

Part Number: 161581-01
Rev. P
Compliance and Certifications

Note: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

EMC Standards
- EN 61000-6-2 Immunity for Industrial Environments
- EN 61000-6-4 Emissions for Industrial Environments

Electrical Safety Standards
- EN 61010-1

European Community Directives
- EMC Directive 2014/30/EU
- LV Directive 2014/35/EU

Hazardous Area Approvals

CSA/NRTL/C (Approval Option -01)
- Ex nC [L] IIC T4 Gc
- Class I, Division 2,
 Groups A, B, C and D
- Class I, Zone 2
- AEx nC IIC T4 Gc
- Class I, Division 2
- Groups A, B, C and D

T4 @ Ta = -20 °C ≤ Ta ≤ +65 °C
(-4 °F ≤ Ta ≤ +149 °F)
per drawing 149243

ATEX/IECEx (Approval Option -02)
- II 3 G
- Ex nA nC ic IIC T4 Gc

T4 @-20 °C ≤ Ta ≤65 °C
(-4 °F to 149 °F)

Physical

<table>
<thead>
<tr>
<th>TDI Module</th>
<th>I/O Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (Height x Width x Depth)</td>
<td>241.3 mm x 24.4 mm x 241.8 mm (9.50 in x 0.96 in x 9.52 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.91 kg (2.0 lbs)</td>
</tr>
</tbody>
</table>

Rack Space Requirements
- TDI Module: 1 full-height front slot
- I/O Modules: 1 full-height rear slot
Ordering Information

Product Options and Part Numbers

3500/22M TDI Module and I/O

3500/22-AXX - BXX - CXX

A: Transient Data Interface Type
 01 Standard (use for standard monitoring applications)

B: I/O Module Type
 01 10Base-T/100Base-TX Ethernet
 02 100Base-FX (Fiber Optic) Ethernet
 03 10Base-T/100Base-TX Ethernet with gold-plated OK Relay contacts
 04 100Base-FX (fiber optic) Ethernet with gold-plated OK Relay contacts

C: Agency Approval Option
 00 None
 01 CSA/NRTL/C (Class 1 Div 2)
 02 Multi (CSA, ATEX, IECEX)

3500 22M Dynamic Data Enabling Disk

This disk enables the number of channels of dynamic data (i.e., the ability to collect waveforms) that the TDI will support. There are two levels of dynamic data. Steady-State points are channels that collect waveform data due either to a software command or to an alarm event, and therefore support current values, scheduled waveform capture, and alarm data capture. Transient points provide all the function of a Steady-State point with the additional capability of waveform collection due to parameter variations such as machine speed.

3500/09-AXXX-BXXX

A: Steady-State Points:
 0 to 672

B: Transient Points:
 2 to 672

The sum of the two fields must be equal to or less than 672. One disk can support multiple TDIs.

Ethernet Cables

Standard 10 Base-T/100 Base-TX Shielded Category 5 Cable with RJ-45 connectors (solid conductor)

138131-AXXX

A: Cable Length:
 006 - 6 feet (1.8 m)
 010 - 10 feet (3.0 m)
 025 - 25 feet (12.2 m)
 040 - 40 feet (12.2 m)
 050 - 50 feet (15.2 m)
 075 - 75 feet (22.9 m)
 085 - 85 feet (25.9 m)
 100 - 100 feet (30.5 m)
 120 - 120 feet (36.6 m)
 150 - 150 feet (45.7 m)
 200 - 200 feet (61.0 m)
 250 - 250 feet (76.2 m)
 320 - 320 feet (97. m)

Standard lengths for 10Base-T/100Base-TX cabling are shown above.
Fiber Optic Cable

100 Base-FX fiber optic cable with MT-RJ female connectors.

161756-AXXX

- A: Cable Length (in feet) up to 1300 ft (400 m)
 - 010 to 500 (10 ft. to 500 ft. in 10 ft. increments only)
 - 500 to 1300 (500 ft. to 1300 ft. in 100 ft. increments only)

Spares

- **288055-01**
 Standard Transient Data Interface Module with USB cable

- **100M2833**
 10 foot A to B USB cable

- **146031-01**
 10Base-T/100Base-TX I/O Module

- **146031-02**
 100Base-FX (Fiber Optic) I/O Module

- **161580-01**
 3500/22M TDI Operation and Maintenance Manual

- **164466-01**
 Network Accessories Datasheet

- **00580441**
 Connector header, internal termination, 3-position, green

- **00580436**
 Connector header, internal termination, 6-position, green

111M5777

- Connector header, internal termination, 2-position, green

Compatibility

When upgrading your 3500 rack from a 3500/20 RIM to a 3500/22 TDI, there may be 3500 M modules (e.g. 3500/40M) that are not compatible with the 3500/22. Please check with bntechsupport@ge.com for additional details.

Network Requirements

For complete information on network requirements, refer to the 3500 Hardening Guide [106M9733]. This document can be requested at bntechsupport.com.
Graphs and Figures

1: Main Module
2: 10 Base-T/100 Base TX (copper) Ethernet I/O Module
3: 100 Base-FX (fiber optic) Ethernet I/O Module
4: LEDs indicate operating status of the module
5: Hardware Switches
6: USB Configuration Port for configuring or retrieving machinery data
7: OK Relay indicates the OK status of the overall rack
8: Signal Common external grounding terminal
9: RJ-45 Ethernet Port for configuration and data collection
10: System Contacts
11: Fiber Optic Ethernet Port for configuration and data collection

Figure 1: Front and rear view of the Transient Data Interface